Assessment Schedule - 2006

Mathematics: Find and use straightforward derivatives and integrals (90286)

Evidence Statement

	Assessment Criteria	Q. No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Find and use straight-forward derivatives and integrals.	1	$\frac{dy}{dx} = 6x - 5$ When $x = 2$, gradient = 7	A1	Both derivative and value are required.	ACHIEVEMENT: 3 As
		2	$f(x) = 2x^{4} - 5x + c$ $c = 7$ $f(x) = 2x^{4} - 5x + 7$	A2	Both antiderivative and <i>c</i> required. No alternative.	1 of each of A1 and A2.
		3	$\int_0^4 (12x - 3x^2) . dx$		Both integral and area required.	
			$= [6x^2 - x^3 + c]_0^4$ $= (96 - 64) - (0)$		Ignore omission of <i>c</i> .	
			= 32	A2		
		4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6 = -4$		Derivative and both x and y values are required.	
			x = 1, y = 2 or (1, 2)	A1	1	

		5	$h = \int v \mathrm{d}t$ $= 2t - 0.05t^2 + c$		Units are not required.	ACHIEVEMENT WITH MERIT:
			c = 0	A2	Or equivalent.	Achievement plus
			When $t = 3$, $h = 5.55$	M	Integral must be shown.	2 Ms
						OR
		6	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x + 4$		Units are not required.	3 Ms
ERIT			$At x = 5, \frac{dy}{dx} = -6$	A1		
W H.			y - 0 = -6(x - 5)			
TIM 1	Apply calculus techniques to solve straight-		y = -6x + 30	M		
ACHIEVEMENT WITH MERIT	forward problems.	7	$\int_{2}^{6} (x^3 - 8x^2 + 12x) \mathrm{d}x$		Units are not required.	
ACHIE			$-\int_0^2 (x^3 - 8x^2 + 12x) \mathrm{d}x$		Integration needs to be shown.	
			$= \left[\frac{x^4}{4} - \frac{8x^3}{3} + 6x^2 + c \right]_2^6$		Do not penalise omission of c .	
			$-\left[\frac{x^4}{4} - \frac{8x^3}{3} + 6x^2 + c\right]_0^2$	A2	Equivalent approaches allowed.	
			$=49.3 \text{ or } 49\frac{1}{3}$	M		

	Apply calculus techniques to solve problems.	8	Let x be width $2x$ be length h be height		Units are not required.	ACHIEVEMENT WITH EXCELLENCE:
CELLENCE	problems.		$3x + h = 162$ $h = 162 - 3x$ $V = x.2x.(162 - 3x)$ $= 324x^{2} - 6x^{3}$			Merit plus E
ACHIEVEMENT WITH EXCELLENCE			For max volume: $\frac{dV}{dx} = 0$		Accept a minor error in working.	
HIEVEME			$648x - 18x^{2} = 0$ $18x (36 - x) = 0$ $x = 36$	A1		
AC				M		
			Hence max volume $V = 139 968 \text{ cm}^3$	E	Or equivalent, to at least 2 significant figures.	

Judgement Statement

Mathematics: Find and use straightforward derivatives and integrals (90286)

Achievement	Achievement with Merit	Achievement with Excellence
Find and use straightforward derivatives and integrals.	Apply calculus techniques to solve straightforward problems.	Apply calculus techniques to solve problems.
3 × A	Achievement plus	Merit plus
including at least	2 × M	1×E
1 each of A1 and A2	OR	
	$3 \times M$	